7ASM Full Paper (Note there will be a banner added here in final version)

Estimating sediment loads in Great Barrier Reef catchments: the balance between modelling and monitoring

Rebecca Bartley¹, David Post², Anne Kinsey-Henderson³ and Aaron Hawdon³

1 CSIRO Land and Water, 120 Meiers Rd, Indooroopilly, 4068. Email: Rebecca.bartley@csiro.au

2 CSIRO Land and Water, Clunies Ross St, Canberra, ACT, 2601.

3 CSIRO Land and Water, PMB Aitkenvale, Townsville, Queensland, 4814.

Key Points

- Sediment from the catchment is damaging the Great Barrier Reef
- Management of the sediment is based on sediment and nutrient source and transport models
- When the sediment yields from the models are compared with measured rates, there is good agreement with the loads
- However, the models probably do not represent the physical processes very well
- There is a substantial lag between changes in land condition and changes in load to the reef

Abstract

In catchments adjacent to the Great Barrier Reef World Heritage Area, there is growing concern that sediments and nutrients being exported from the land are having a detrimental effect on coral reef communities. Monitoring programs have been initiated in the Burdekin catchment to determine rates of sediment runoff and to provide important base line data against which to evaluate any future effect of land management changes. Due to the spatial limitations and high cost of field monitoring, modelling has also been carried out to determine the current sediment loads across the Burdekin catchment. This paper presents a comparison of some of the measured and modelled sediment load data. The data suggest that there is good agreement between end of sub-catchment measured and modelled sediment loads. However, more detailed process based field monitoring has highlighted that the model does not necessarily accurately represent the different erosion processes contributing to the end of catchment loads, at least during drought conditions. The field data also suggest that there is a significant delay between changes in land condition and end of catchment sediment loads, and further work is needed to quantify the temporal lag between land management change and water quality response.

Keywords

Burdekin, grazing, sediment, erosion, Great Barrier Reef, models, Sednet

Introduction

Sediment and nutrient loads from catchments adjacent to the Great Barrier Reef (GBR) World Heritage Area in Queensland, Australia, have increased since European settlement (McCulloch *et al.*, 2003; Neil *et al.*, 2002). Recent research suggests that these increased loads are having a detrimental effect on coral reef systems (e.g. Fabricius *et al.*, 2005). In an effort to reduce this impact, the Reef

Authors Names. (2014). Paper title, in Editors Names, Proceedings of the 7th Australian Stream Management Conference. Townsville, Queensland, Pages XXX - XXX. **Comment [IDR1]:** This template is for example only – please do not use it for your paper! We have provided a 'blank' template for this (called "7ASM full paper TEMPLATE"). You need to use that template, and then save it with the special naming convention that we provided. This is "7ASM –Abstract number – surname V1" Your abstract number was provided in the email that provided this template.

Comment [i2]: Please note that sections of this paper have been deleted for its use as a template. Please see this website for the full version plus all of the papers

http://www.csu.edu.au/research/ilws/new s/events/5asm/docs/proceedings/Bartley_ Rebecca_13.pdf

Comment [i3]: Include email addresses for at least the primary author –easier to contact you

Comment [i4]: List 3 to 5 key points that are the take-home message from the paper

Comment [i5]: The abstract must be less than 200 words

Comment [i6]: List up to 8 keywords – these allow your paper to be found more easily by search engines. Mention places as well as issues/processes

Water Quality Protection Plan (RWQPP) was signed by the Queensland and Federal Governments in October 2003 with the overall aim of 'halting and reversing the decline in water quality entering the reef within 10 years'. To facilitate the implementation of the RWQPP, regional Natural Resource Management (NRM) catchment bodies are required to determine the major land uses and processes responsible for the excess loads, and set appropriate water quality targets. This, in theory, will then provide a bench mark for the assessment of improved land management practices over time.

Due to the large area and short time frame involved with the RWQPP, water quality targets and evaluations of land use change have been determined using catchment modelling, primarily in the form of the SedNet model (e.g. Brodie *et al.*, 2001; Cogle *et al.*, 2006; McKergow *et al.*, 2005). SedNet is a spatial model that produces catchment scale sediment budgets by predicting various erosion and deposition processes within a river link network (Prosser *et al.*, 2001); Wilkinson *et al.*, 2004). The SedNet model is considered to be robust when applied at large scales (>10,000 km²) and has been shown to perform well when evaluated against end of catchment load monitoring and tracing data in catchments with rivers that have regular flow (e.g. Bartley *et al.*, 2004). There has, however, been no similar comparison for ephemeral rivers such as those in the dry tropics. In this paper we: (1) compare measured and modelled sediment load data for six sub- catchments in the Burdekin River (14 - 36,000 km²); and (2) evaluate a within catchment sediment budget derived from field monitoring and modelling for the Weany Creek catchment (14 km²) in the Upper Burdekin. The Burdekin and Fitzroy River basin, are considered to be the largest contributors of sediment to the GBR lagoon (McKergow *et al.*, 2005). The implications of these results are then discussed within the context of target setting and land management change dry tropical rangeland grazing.

Field sites and methods

Catchment scale monitoring

Over the last 7 years, a range of organisations including Meat and Livestock Australia, the Department of Defence and the Burdekin Dry Tropics Board have funded the installation and maintenance of 10 sub- catchment water quality monitoring stations in the Burdekin River basin (Figure 1A). At each station, stage height was measured at 1 minute intervals when the stream depth was above the event threshold (varies for each site). Water depth was measured using a Greenspan ps700 pressure transducer. The gauge sites were surveyed to determine the mean cross-section dimensions. Turbidity and velocity were recorded using a McVann turbidity meter and Starflow Ultrasonic Doppler Velocity meter. A tipping bucket rain gauge was located adjacent to the gauge at each site. Water samples were collected during events using an ISCO automatic water sampler and samples were returned to the laboratory for analysis of turbidity, total suspended solids (TSS), nitrogen, phosphorus and, at some sites, sediment size distribution. Strong relationships exist at most sites between turbidity and TSS (see Post et al., 2006 for more details). The relationship between suspended sediment and turbidity was used to determine flow weighted suspended sediment concentration (after Grayson et al., 1996). These suspended sediment data, along with the velocity and channel dimensions, were used to calculate the sediment loads during events. The event based sediment loads were then totalled for each wet season to provide an annual suspended sediment yield at the catchment outlet.

Comment [IDR7]: Please provide enough detail in the methods that other people could reproduce the study

Authors Names. (2014). Paper title, in Editors Names, Proceedings of the 7th Australian Stream Management Conference. Townsville, Queensland, Pages XXX - XXX.

Bartley et.al. - Sediment loads from Great Barrier Reef Catchments [provide <10 word running header here]

Figure 1. (A) map of the Burdekin sub-catchments currently monitored for sediment loads and (B) the Weany Creek catchment showing the location of the hillslope, gully and bank erosion measurement sites.

Sub-catchment scale monitoring

The 10 monitoring sites shown in Figure 1A are useful for measuring end of catchment loads, however, more detailed studies are required to determine which erosion processes are contributing to these loads. To obtain a better understanding of the sediment budget for these grazed semi-arid landscapes, a range of hillslope, gully, bank and channel bed monitoring sites were set up in Weany Creek (Figure 1B). Weany Creek catchment is 14 km² and has been grazed for more than 100 years. The catchment was chosen for monitoring due to its location in an area identified as having high erosion rates (Prosser *et al.*, 2001a), but also because of the willingness of the landholders to trial sustainable grazing practices. The details of the field equipment and methods used in this study are presented in detail in Bartley *et al.*, (In Press; 2006). An overview of the processes, methods and timescales of data collection is given in Table 1.

Table 1. Overview of processes, methods and timescales over which data were collected.

Process/variable measured	Method used	Period data was collected	
Net hillslope sediment loss	Flumes	2002-2005	
Gully head cutting	Erosion pins	six years for three gully heads (1999-	
		2005) and one year for five gullies	
Gully side wall erosion/deposition	Pins and cross-sections; GPS with	six years for one gully system (1999-	
	Wild TC total station	2005) and one year for five gullies	
Erosion/deposition of gully floor	Pins, x-sects and scour chains	six years for one gully system (1999-	
		2006) and one year for five gullies	
Bank erosion	Erosion pins	2002-2005	
Channel sediment storage	Bench marked cross-sectional change	2002-2005	
Sediment yield at catchment outlet	Gauging station	2000-2005*	

* only data for 2002-2005 was included in final budget

Authors Names. (2014). Paper title, in Editors Names, Proceedings of the 7th Australian Stream Management Conference. Townsville, Queensland, Pages XXX - XXX. **Comment [r8]:** Since this paper is going to be available on line you can have colour figures, and you can have figures as large as you like – i.e. covering up to a full A4 page. However, in terms of file size, we still need to be able to send the papers around so watch the file size.

Use plenty of photos and figures! Everybody loves pictures.

Comment [IDR9]: Captions for table go above the table. You can use any format you like for text in the table itself

Results and discussion

Catchment scale comparison between measured and modelled sediment loads

Six of the ten monitoring sites had two or more years of data suitable for calculating loads. Unfortunately the data were collected during some of the driest years on record, therefore a direct comparison with the long term average data used in SedNet is not necessarily appropriate. However, a comparison of results will allow us to test whether the measured and modelled results are in the same order of magnitude and therefore suitable for long term average load predictions and target setting. There is a good agreement between the measured and modelled sub-catchment sediment loads (Table 2 and Figure 2). SedNet is over-predicting sediment load in 5 out of 6 catchments, but, this is expected given the lower rainfall years available for calculating measured loads. This analysis suggests that SedNet is suitable for estimating average end of catchment sediment loads.

Sub-catchment scale comparison of measured and modelled sediment loads

As shown in the previous section, there is a reasonable match between the modelled and measured subcatchment load data in the Burdekin catchment. However, this does not mean you can assume the same level of accuracy when interpreting the erosion process data. It is also possible that the right predicted yield is obtained for the wrong reasons. Table 3 presents the sediment budget for Weany Creek as measured by the SedNet model (Kinsey-Henderson *et al.*, 2005) and from field monitoring data (Bartley *et al.*, In Press). Both the modelled and field measured sediment budgets have very similar fine sediment loads of 830 and 784 t/yr, respectively. Both these load estimates are within 30% of the suspended sediment flux measured at the end of the catchment (Table 3).

			Measured data			Modelled data
Site # in Fig. 1	Site name	Catchment area (km ²)	Data collection period (year wet season started)	Years of data	Mean suspended sediment yield (Kt/yr)	Mean suspended sediment yield (Kt/yr)
3	Weany Creek	14	1999-2005	7	0.54	0.83
4	Thornton Creek	85	2001-2005	5	2.9	3.2
7	Station Creek	148	2001-2005	4	7.98	9.8
8	Keelbottom Creek	1170	2002-2005	4	18.2	71.1
9	Bowen@ Myuna	7200	2003-2005	2	375.2	584.4
10	Burdekin@ Macrossan	36390	2001-2005	5	1987.4	1755.8

Table 2. Monitoring and modelling results for 6 gauged sites in the Burdekin catchment ranked according to catchment size. It is estimated that there is $\pm 50\%$ error associated with the measured load estimates.

It is important to stress that the comparison between modelled and measured results presented in Table 3 is influenced by the different time periods of the two methods. The measured sediment budget was developed during an extremely low rainfall period and therefore this budget is representative of drought conditions (average runoff of 17.46 mm/yr for 2003-2005). The modelled results are based on a slightly wetter rainfall period (~ 49.36 mm/yr of runoff for 2000-2002). The measured sediment budget may look more similar to the modelled budget if the data were collected during a higher rainfall period. For example, during higher rainfall periods, the gullies may become a net sediment source as predicted by the model, and similarly the stream bed may become a net sediment sink. However, the model does not currently account for deposition in gully systems, only erosion. Nor does the model represent the channel bed as a net sediment source regardless of

the hydrological conditions. This is because the model is designed to represent long term changes only. Therefore caution must be used when using the model at small scales and during drought conditions in dry tropical environments.

Conclusion

There is a need for robust catchment scale sediment and nutrient budget models to help with water quality target setting and land management scenario analysis in the GBR region. This paper has shown that there is good agreement between modelled and measured end of catchment sediment loads at a range of scales in the Burdekin catchment. However, more detailed field monitoring in a headwater catchment of the Burdekin has highlighted that that the models do not adequately represent the erosion processes contributing to the end of catchment loads, however, this is potentially due to low rainfall conditions during data collection. This research highlights how long term catchments. It also emphasises that models such as SedNet will continually evolve as new data and process understanding becomes available. Any load based predictions and associated water quality targets made using these models will change over time. Water quality targets should therefore be presented using a range of values rather than single load values.

The field monitoring in Weany Creek also highlighted that there is likely to be a temporal delay between the erosion event in the catchment, and the delivery of sediment from the catchment due to storage of material in channel and gully systems in dry years. Research using sediment tracing and dating techniques would be useful for quantifying the residence times of both fine and coarse sediment, which is crucial for understanding the link between land management change and the downstream impacts on receiving water bodies. Further work looking at the impact of different climate regimes (drought versus wet periods) would also provide an insight into how end of catchment loads, and thus water quality targets, may be expected to change with time.

Acknowledgments

The research presented in this paper was funded by Meat and Livestock Australia, Australian Defence Force, Burdekin Dry Tropics Board and CSIRO; their support is gratefully acknowledged. We also thank Rob and Sue Bennetto for access to their property 'Virginia Park' to carry out this work. Thank you also to Malcolm Hodgen for production of the figures, and to Rex Keen, Joseph Kemei and Jamie Vleeshouwer who assisted with the installation of field equipment and collection of samples. Reviews by Scott Wilkinson greatly improved a previous version of this manuscript.

References

- Bartley, R., Hawdon, A., Post, D. A., & Roth, C. H. (In Press). A sediment budget in a grazed semi-arid catchment in the Burdekin basin, Australia. *Geomorphology*.
- Bartley, R., Olley, J., & Henderson, A. (2004). *A sediment budget for the Herbert River catchment, North Queensland, Australia.* In Sediment Transfer through the Fluvial System, IAHS Publ. No. 288, 147-153.
- Bartley, R., Roth, C. H., Ludwig, J., McJannet, D., Liedloff, A., Corfield, J., *et al.* (2006). Runoff and erosion from Australia's tropical semi-arid rangelands: influence of ground cover for differing space and time scales. *Hydrological Processes, 20*, 3317-3333.
- Brodie, J., Furnas, M., Ghonim, S., Haynes, D., Mitchel, A., Morris, S., et al. (2001). Great Barrier Reef Catchment Water Quality Action Plan. Townsville: Great Barrier Reef Marine Park Authority.

assemblages along water quality gradients on the inshore Great Barrier Reef. Marine Pollution

Cogle, A. L., Carroll, C., & Sherman, B. S. (2006). *The use of SedNet and ANNEX models to guide GBR catchment sediment and nutrient target setting* (No. QNRM06138). Brisbane: Department of Natural Resources, Mines and Water, http://www.wqonline.info/products/short_term_modelling.html.
Fabricius, K. E., De'ath, G., McCook, L., Turak, E., & Williams, D. M. (2005). Changes in algal, coral and fish

Authors Names. (2014). Paper title, in Editors Names, Proceedings of the 7th Australian Stream Management Conference. Townsville, Oueensland, Pages XXX - XXX. Comment [10]: Please be generous with your acknowledgements – ensure that you include any funding sources, people who helped, local people who gave access to properties etc.

Comment [IDR11]: Please follow the basic structure of these references . If you are using bibliography software (such as Endnote) then select APA format (this is the American Psychological Association) which is a pretty standard one.

Comment [IDR12]: Please ensure that all hyperlinks actually work – as they will be active in the online and PDF version of the paper.

5

Bulletin, 51, 384-398.

- Grayson, R. B., Finlayson, B., Gippel, C. J., & Hart, B. T. (1996). The potential of field turbidity measurements for the computations of total phosphorus and suspended solids loads. *Journal of Environmental Management*, 47, 257-267.
- Kinsey-Henderson, A. E., Post, D. A., & Prosser, I. P. (2005). Modelling sources of sediment at subcatchment scale: an example from the Burdekin Catchment, North Queensland, Australia. *Mathematics and Computers in Simulation*, 69, 90-102.
- McCulloch, M., Fallon, S., Wyndham, T., Hendy, E., Lough, J., & Barnes, D. (2003). Coral record of increased sediment flux to the inner Great Barrier Reef since European Settlement. *Nature*, 421, 727-730.
- McKergow, L. A., Prosser, I. P., Hughes, A. O., & Brodie, J. (2005). Sources of sediment to the Great Barrier Reef World Heritage Area. *Marine Pollution Bulletin.*, *51*(1-4), 200-211.
- Neil, D. T., Orpin, A. R., Ridd, P. V., & Yu, B. (2002). Sediment yield and impacts from river catchments to the Great Barrier Reef Lagoon. *Marine and Freshwater Research, 53*, 733-752.
- Post, D. A., Bartley, R., Corfield, J., Nelson, B., Kinsey-Henderson, A., Hawdon, A., *et al.* (2006). *Sustainable Grazing for a Healthy Burdekin Catchment*. Canberra: CSIRO, http://www.clw.csiro.au/publications/science/2006/sr62-06.pdf.
- Prosser, I., Moran, C., Lu, H., Scott, A., Rustomji, P., Stevenson, J., *et al.* (2001a). *Regional Patterns of Erosion and Sediment Transport in the Burdekin River Catchment* (Project Number NAP3.224). Sydney: Meat and Livestock Australia, <u>http://www.clw.csiro.au/publications/technical2002/tr5-02.pdf</u>.
- Prosser, I., Rustomji, P., Young, P., Moran, C., & Hughes, A. (2001b). *Constructing River Basin Sediment Budgets for the National Land and Water Audit* (Technical Report No. 15/01). Canberra: CSIRO Land and Water.
- Wilkinson, S. N., Henderson, A., Chen, Y., & Sherman, B. S. (2004). *SedNet: User Guide Version 2.0.0* (Client Report for the Cooperative Research Centre for Catchment Hydrology). Canberra: CSIRO.

Authors Names. (2014). Paper title, in Editors Names, Proceedings of the 7th Australian Stream Management Conference. Townsville, Queensland, Pages XXX - XXX.